metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(4-bromobenzyl)isoquinolinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickel(II)

Ai-Qun Zhou,^a Jia-Rong Zhou^b and Chun-Lin Ni^{b*}

^aHunan College of Information, Hunan, Changsha 410200, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China Correspondence e-mail: ctgunicl@163.com

Received 31 October 2007; accepted 5 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.011 Å; R factor = 0.065; wR factor = 0.147; data-to-parameter ratio = 14.7.

The new title nickel(II) complex, $(C_{16}H_{13}BrN)_2[Ni(C_4N_2S_2)_2]$, is a salt obtained by the direct reaction of NiCl₂, disodium maleonitriledithiolate (Na₂mnt) and 1-(4-bromobenzyl)isoquinolinium bromide, (BrBzIQl)⁺Br⁻, in methanol. The structure contains two (BrBzIQl)⁺ cations and an Ni(mnt)₂²⁻ anion in the asymmetric unit. In the two (BrBzIQl)⁺ cations, the dihedral angles between the benzene ring and the isoquinoline plane are 71.0 (4) and 82.1 (4)°. The [Ni(mnt)₂]²⁻ anion exhibits a slightly distorted square-planar coordination geometry. The crystal structure is stabilized by three weak C– H···N hydrogen bonds and a π - π stacking interaction involving the benzene ring and isoquinoline plane [centroid– centroid separation 3.774 (2) Å]

Related literature

For details of other square-planar 1,2-dithiolene metal complexes, see: Robertson & Cronin (2002); Ni *et al.* (2005); Xie *et al.* (2002); Ren *et al.* (2002); Nishijo *et al.* (2003); Canadell (1999). For the structures of related Ni(mnt)₂⁻ complexes with square-planar geometry and a substituted isoquinolinium counter-ion, see: Ni, Dang *et al.* (2005) Ni, Yang & Meng (2005), Ni *et al.* 2006, 2007).

Experimental

b = 13.354 (5) Å c = 14.754 (5) Å
$\alpha = 110.776 \ (7)^{\circ}$ $\beta = 101.261 \ (6)^{\circ}$

$\gamma = 97.880 \ (7)^{\circ}$
$V = 1992.8 (12) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min} = 0.461, \ T_{\max} = 0.762$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 & 466 \text{ parameters} \\ wR(F^2) &= 0.147 & H\text{-atom parameters constrained} \\ S &= 1.04 & \Delta\rho_{\text{max}} = 0.96 \text{ e } \text{ Å}^{-3} \\ 6871 \text{ reflections} & \Delta\rho_{\text{min}} = -0.68 \text{ e } \text{ Å}^{-3} \end{split}$$

 $\mu = 2.74 \text{ mm}^{-1}$ T = 291 (2) K

 $R_{\rm int} = 0.085$

 $0.30 \times 0.30 \times 0.10 \text{ mm}$

9888 measured reflections

6871 independent reflections 3408 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	D-H	$\cdots A$
$C17 - H17 \cdots N1^{i}$ $C31 - H31A \cdots N2^{ii}$ $C36 - H36 \cdots N2^{iii}$	0.93 0.97 0.93	2.40 2.48 2.59	3.226 (10) 3.359 (10) 3.288 (9)	148 151 132	
Symmetry codes: (i) $x - 1, y, z + 1.$	-x + 1, -y	+1, -z + 1;	(ii) $-x + 1, -y$, -z + 1;	(iii)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Science and Technology Project (No. 2007B011000008) of Guangdong Science and Technology Department and the President's Science Foundation of South China Agricultural University (No. 2005 K092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2407).

References

- Bruker (2000). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SMART* (Version 5.62) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Canadell, E. (1999). Coord. Chem. Rev. 185-186, 629-651.
- Ni, C. L., Dang, D. B., Li, Y. Z., Gao, S., Ni, Z. P., Tian, Z. F. & Meng, Q. J. (2005). J. Solid State Chem. 178, 100-105.
- Ni, C. L., Tian, Z. F., Ni, Z. P., Dang, D. B., Li, Y. Z., Song, Y. & Meng, Q. J. (2006). *Inog. Chim. Acta*, 359, 3927–3933.
- Ni, C. L., Yang, L. M. & Meng, Q. J. (2005). Inorg. Chem. Commun. 8, 1105–1108.
- Ni, C. L., Zhou, J. R., Tian, Z. F., Ni, Z. P., Li, Y. Z. & Meng, Q. J. (2007). *Inorg. Chem. Commun.* **10**, 880–883.
- Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2003). *Synth. Met.* **133–134**, 539–542.
- Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686–5692.
- Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347.

Acta Cryst. (2007). E63, m2980 [doi:10.1107/S1600536807055821]

Bis[2-(4-bromobenzyl)isoquinolinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S,S'$)nickel(II)

A.-Q. Zhou, J.-R. Zhou and C.-L. Ni

Comment

1,2-Dithiolene metal complexes are important molecular materials with interesting physical properties such as electical conductivity, superconductivity, photoelectric and magnetic properties (Robertson & Cronin, 2002; Ni *et al.*, 2004; Xie *et al.*, 2002; Ren *et al.*, 2002; Nishijo *et al.*, 2003; Canadell, 1999). Recently, some substituted isoquinolinium cations have been introduced into the Ni(mnt)₂ system to obtain Ni(mnt)₂^{2–}-based molecular solids showing unusual magnetic properties (Ni *et al.*, 2005; Ni *et al.*, 2006; Ni *et al.*, 2007). To gain more insight into how the substituted groups affects the stacking mode of Ni(mnt)₂^{2–} anion, we herein present a new Ni(mnt)₂^{2–} salt containing the 1-(4-bromobenzyl)isoquinolinium cation as shown in Fig.1. The salt consists of two (BrBzIQl)⁺ cations and a Ni(mnt)₂^{2–} anion in the asymmetric unit. In the cations, the dihedral angles between the benzene rings and the isoquinoline groups are 71.0 (4) ° for the cation containing N5, and 82.1 (4) ° for the cation containing N6. The Ni(II) ion of the [Ni(mnt)₂]^{2–} anion and exhibits a slightly distorted square-planar coordination geometry. The four CN groups of [Ni(mnt)₂]^{2–} are slightly tipped out of the S1/S2/Ni1/S3/S4 plane and the deviations from the plane are -0.294 (3) Å for N1, -0.324 (3) Å for N2, -0.237 (3) Å for N3 and 0.195 (3)Å for N4, respectively.

The crystal structure is stabilized by C17—H17···N1, C31—H31A···N2 and C36—H36···N2 hydrogen bonds, Table 1, and a π ··· π stacking interaction between the N5/C16···C24 group and the C25ⁱ···C30ⁱ ring [Symmetry Code:(i)1 – x,1 – y,1 – z] with a distance of 3.774 (2) Å between the centroids of the two systems, Fig 2.

Experimental

The title compound was prepared by the direct reaction of NiCl₂· $6H_2O$, Na₂mnt and (BrBzIQl)⁺Br⁻ in in methanol. The brown block-like single crystals were obtained by slow evaporation of a mixed solution of CH₃CN and i-PrOH (1:1) at room temperature for about two weeks.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic and 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ atoms.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The $\pi \cdots \pi$ interaction in the structure of (I) [Symmetry Code:(A)1 - x, 1 - y, 1 - z].

Bis[2-(4-bromobenzyl)isoquinolinium] bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S$,S')nickel(II)

Crystal data	
(C ₁₆ H ₁₃ BrN) ₂ [Ni(C ₄ N ₂ S ₂) ₂]	Z = 2
$M_r = 937.44$	$F_{000} = 940$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.562 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.320 (4) Å	Cell parameters from 698 reflections
b = 13.354 (5) Å	$\theta = 2.8 - 20.4^{\circ}$
c = 14.754 (5) Å	$\mu = 2.74 \text{ mm}^{-1}$
$\alpha = 110.776 \ (7)^{\circ}$	T = 291 (2) K
$\beta = 101.261 \ (6)^{\circ}$	Block, brown
$\gamma = 97.880 \ (7)^{\circ}$	$0.30\times0.30\times0.10~mm$
$V = 1992.8 (12) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	6871 independent reflections
Radiation source: fine-focus sealed tube	3408 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.085$
T = 291(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -13 \rightarrow 13$
$T_{\min} = 0.461, \ T_{\max} = 0.762$	$k = -15 \rightarrow 9$
9888 measured reflections	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring Least-squares matrix: full sites $R[F^2 > 2\sigma(F^2)] = 0.066$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.04P)^2]$ $wR(F^2) = 0.147$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.04 $\Delta \rho_{max} = 0.96 \text{ e} \text{ Å}^{-3}$ 6871 reflections $\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$ 466 parameters Primary atom site location: structure-invariant direct Extinction correction: none methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.32855 (7)	0.37256 (6)	0.16612 (5)	0.0583 (2)
Br1	1.19531 (9)	0.73115 (8)	0.60159 (10)	0.1871 (6)
Br2	0.17434 (9)	0.03355 (11)	0.37778 (7)	0.1603 (5)
C1	0.4413 (5)	0.2335 (4)	0.2708 (4)	0.0585 (16)
C2	0.4826 (5)	0.2076 (4)	0.1883 (4)	0.0562 (15)
C3	0.5536 (6)	0.1275 (5)	0.1648 (4)	0.0650 (17)
C4	0.4693 (6)	0.1786 (6)	0.3371 (5)	0.0705 (18)
C5	0.1738 (5)	0.5346 (5)	0.1360 (5)	0.0657 (17)
C6	0.2167 (5)	0.5077 (4)	0.0552 (5)	0.0617 (17)
C7	0.1943 (7)	0.5541 (5)	-0.0193 (5)	0.0727 (19)
C8	0.0952 (6)	0.6130 (5)	0.1550 (5)	0.0761 (19)
C9	1.0375 (8)	0.6558 (6)	0.5121 (8)	0.107
C10	0.9467 (8)	0.6324 (6)	0.5551 (5)	0.099 (3)
H10	0.9625	0.6513	0.6241	0.119*
C11	0.8294 (7)	0.5790 (6)	0.4910 (6)	0.096 (2)
H11	0.7654	0.5617	0.5177	0.115*
C12	0.8059 (7)	0.5513 (5)	0.3897 (6)	0.0724 (19)
C13	0.9011 (8)	0.5752 (6)	0.3523 (5)	0.089 (2)
H13	0.8880	0.5555	0.2834	0.106*
C14	1.0172 (7)	0.6285 (6)	0.4156 (7)	0.102 (2)
H14	1.0818	0.6451	0.3890	0.122*
C15	0.6783 (6)	0.4941 (5)	0.3214 (5)	0.097 (2)
H15A	0.6850	0.4467	0.2563	0.117*
H15B	0.6365	0.4483	0.3493	0.117*
C16	0.5567 (9)	0.6257 (8)	0.3865 (7)	0.119 (3)
H16	0.5716	0.6073	0.4422	0.143*
C17	0.4902 (8)	0.7017 (8)	0.3868 (6)	0.124 (3)
H17	0.4604	0.7362	0.4416	0.148*
C18	0.4681 (7)	0.7266 (6)	0.3041 (7)	0.092 (2)
C19	0.3982 (8)	0.8111 (7)	0.3006 (7)	0.118 (3)
H19	0.3682	0.8494	0.3540	0.141*
C20	0.3801 (8)	0.8300 (6)	0.2136 (8)	0.107 (3)
H20	0.3358	0.8820	0.2075	0.129*
C21	0.4259 (7)	0.7737 (7)	0.1355 (6)	0.094 (2)

H21	0.4125	0.7901	0.0787	0.113*
C22	0.4893 (6)	0.6959 (6)	0.1375 (6)	0.084 (2)
H22	0.5174	0.6578	0.0828	0.101*
C23	0.5108 (6)	0.6752 (5)	0.2229 (6)	0.0746 (19)
C24	0.5810 (6)	0.5931 (5)	0.2271 (6)	0.079 (2)
H24	0.6096	0.5548	0.1727	0.095*
C25	0.1943 (7)	0.0626 (7)	0.5152 (5)	0.095
C26	0.1321 (7)	0.1321 (6)	0.5688 (6)	0.100 (2)
H26	0.0813	0.1661	0.5376	0.120*
C27	0.1436 (6)	0.1519 (5)	0.6671 (6)	0.084 (2)
H27	0.0971	0.1961	0.7019	0.100*
C28	0.2237 (5)	0.1071 (4)	0.7157 (5)	0.0587 (15)
C29	0.2878 (6)	0.0399 (5)	0.6612 (5)	0.0728 (18)
H29	0.3408	0.0077	0.6926	0.087*
C30	0.2760 (6)	0.0186 (5)	0.5605 (5)	0.087 (2)
H30	0.3227	-0.0247	0.5250	0.104*
C31	0.2412 (6)	0.1313 (5)	0.8254 (4)	0.0690 (17)
H31A	0.3078	0.1000	0.8478	0.083*
H31B	0.2649	0.2103	0.8631	0.083*
C32	0.0844 (6)	-0.0256 (5)	0.8057 (4)	0.0639 (17)
H32	0.1244	-0.0715	0.7649	0.077*
C33	-0.0166 (6)	-0.0677 (5)	0.8254 (4)	0.0648 (17)
H33	-0.0463	-0.1435	0.7965	0.078*
C34	-0.0797 (5)	-0.0037 (5)	0.8871 (4)	0.0528 (15)
C35	-0.1846 (6)	-0.0443 (5)	0.9091 (4)	0.0673 (18)
H35	-0.2181	-0.1196	0.8817	0.081*
C36	-0.2396 (6)	0.0265 (6)	0.9718 (5)	0.0749 (19)
H36	-0.3104	-0.0011	0.9862	0.090*
C37	-0.1891 (6)	0.1402 (6)	1.0139 (5)	0.0757 (19)
H37	-0.2258	0.1873	1.0570	0.091*
C38	-0.0882 (6)	0.1812 (5)	0.9925 (4)	0.0687 (17)
H38	-0.0564	0.2568	1.0201	0.082*
C39	-0.0302 (6)	0.1117 (5)	0.9290 (4)	0.0549 (15)
C40	0.0727 (6)	0.1510 (5)	0.9056 (4)	0.0563 (15)
H40	0.1046	0.2265	0.9327	0.068*
N1	0.4949 (6)	0.1342 (5)	0.3877 (4)	0.095 (2)
N2	0.6105 (6)	0.0614 (5)	0.1465 (4)	0.097 (2)
N3	0.1829 (6)	0.5868 (5)	-0.0815 (5)	0.093 (2)
N4	0.0365 (6)	0.6768 (5)	0.1724 (5)	0.098 (2)
N5	0.6030 (5)	0.5746 (5)	0.3085 (6)	0.0826 (17)
N6	0.1288 (4)	0.0869 (4)	0.8465 (3)	0.0573 (12)
S1	0.35194 (16)	0.32994 (13)	0.29755 (11)	0.0708 (5)
S2	0.44630 (15)	0.26760 (12)	0.10251 (11)	0.0654 (5)
S3	0.31046 (15)	0.41468 (12)	0.03658 (11)	0.0676 (5)
S4	0.20597 (17)	0.47605 (14)	0.22340 (13)	0.0810 (5)

Atomic dis	placement	parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0551 (5)	0.0450 (5)	0.0682 (5)	0.0130 (3)	0.0170 (4)	0.0135 (3)
Br1	0.1028 (7)	0.0784 (7)	0.2734 (14)	0.0060 (5)	-0.0676 (8)	0.0123 (7)
Br2	0.1135 (8)	0.2950 (15)	0.0978 (7)	0.0386 (9)	0.0250 (6)	0.1107 (8)
C1	0.052 (4)	0.055 (4)	0.059 (4)	0.012 (3)	0.010 (3)	0.014 (3)
C2	0.048 (4)	0.051 (4)	0.061 (4)	0.009 (3)	0.010 (3)	0.014 (3)
C3	0.066 (4)	0.078 (5)	0.066 (4)	0.031 (4)	0.029 (3)	0.034 (3)
C4	0.067 (5)	0.078 (5)	0.064 (5)	0.022 (4)	0.014 (4)	0.025 (4)
C5	0.055 (4)	0.055 (4)	0.082 (5)	0.015 (3)	0.016 (3)	0.021 (3)
C6	0.064 (4)	0.036 (3)	0.069 (4)	0.007 (3)	0.008 (3)	0.009 (3)
C7	0.087 (5)	0.049 (4)	0.072 (5)	0.020 (4)	0.013 (4)	0.014 (4)
C8	0.079 (5)	0.064 (5)	0.097 (5)	0.028 (4)	0.035 (4)	0.035 (4)
C9	0.076	0.085	0.121	0.014	-0.011	0.015
C10	0.111 (7)	0.079 (5)	0.078 (5)	0.035 (5)	0.001 (5)	0.004 (4)
C11	0.089 (6)	0.107 (6)	0.089 (6)	0.022 (5)	0.023 (5)	0.035 (5)
C12	0.074 (5)	0.046 (4)	0.083 (5)	0.009 (3)	0.009 (4)	0.016 (3)
C13	0.087 (6)	0.092 (6)	0.085 (5)	0.026 (5)	0.022 (5)	0.031 (4)
C14	0.074 (6)	0.093 (6)	0.143 (7)	0.019 (5)	0.031 (5)	0.051 (5)
C15	0.088 (5)	0.054 (4)	0.119 (6)	0.001 (4)	-0.005 (5)	0.020 (4)
C16	0.126 (8)	0.132 (8)	0.105 (7)	0.049 (7)	0.036 (6)	0.043 (6)
C17	0.126 (8)	0.160 (9)	0.080 (6)	0.068 (7)	0.032 (6)	0.027 (6)
C18	0.083 (5)	0.087 (6)	0.080 (6)	0.017 (4)	0.013 (5)	0.009 (5)
C19	0.119 (7)	0.105 (7)	0.099 (7)	0.045 (6)	0.019 (6)	0.003 (5)
C20	0.094 (6)	0.084 (6)	0.118 (7)	0.029 (5)	0.008 (6)	0.016 (6)
C21	0.079 (5)	0.081 (6)	0.110 (6)	0.010 (5)	0.014 (5)	0.032 (5)
C22	0.065 (5)	0.084 (6)	0.093 (6)	0.008 (4)	0.020 (4)	0.026 (4)
C23	0.064 (4)	0.054 (4)	0.079 (5)	-0.003 (4)	0.009 (4)	0.007 (4)
C24	0.062 (5)	0.056 (5)	0.092 (6)	-0.003 (4)	0.006 (4)	0.011 (4)
C25	0.088	0.118	0.087	0.022	0.019	0.054
C26	0.099 (6)	0.128 (7)	0.121 (7)	0.052 (5)	0.033 (5)	0.090 (6)
C27	0.082 (5)	0.082 (5)	0.106 (6)	0.041 (4)	0.028 (5)	0.051 (4)
C28	0.053 (4)	0.050 (4)	0.076 (4)	0.012 (3)	0.016 (3)	0.028 (3)
C29	0.079 (5)	0.070 (5)	0.072 (5)	0.033 (4)	0.017 (4)	0.026 (3)
C30	0.083 (5)	0.108 (6)	0.073 (5)	0.036 (4)	0.022 (4)	0.034 (4)
C31	0.061 (4)	0.062 (4)	0.075 (5)	0.008 (3)	0.017 (3)	0.019 (3)
C32	0.066 (4)	0.048 (4)	0.072 (4)	0.015 (3)	0.013 (3)	0.018 (3)
C33	0.073 (5)	0.044 (4)	0.063 (4)	0.001 (3)	0.005 (4)	0.015 (3)
C34	0.057 (4)	0.053 (4)	0.044 (3)	0.006 (3)	-0.003 (3)	0.024 (3)
C35	0.062 (4)	0.069 (5)	0.059 (4)	-0.005 (4)	-0.002 (3)	0.027 (3)
C36	0.068 (5)	0.094 (6)	0.065 (4)	0.006 (4)	0.013 (4)	0.040 (4)
C37	0.080 (5)	0.084 (6)	0.077 (5)	0.026 (4)	0.031 (4)	0.039 (4)
C38	0.082 (5)	0.059 (4)	0.080 (5)	0.025 (4)	0.032 (4)	0.035 (3)
039	0.063 (4)	0.049 (4)	0.059 (4)	0.016 (3)	0.015 (3)	0.029 (3)
C40	0.063 (4)	0.045 (4)	0.062 (4)	0.014 (3)	0.013 (3)	0.024 (3)
N1	0.115 (5)	0.106 (5)	0.081 (4)	0.054 (4)	0.029 (4)	0.044 (4)

N2	0.113 (5)	0.116 (5)	0.099 (4)	0.073 (4)	0.051 (4)	0.054 (4)
N3	0.124 (5)	0.072 (4)	0.083 (5)	0.035 (4)	0.015 (4)	0.030 (3)
N4	0.099 (5)	0.084 (4)	0.136 (5)	0.050 (4)	0.049 (4)	0.052 (4)
N5	0.064 (4)	0.065 (4)	0.097 (5)	0.004 (3)	0.009 (4)	0.017 (4)
N6	0.057 (3)	0.048 (3)	0.065 (3)	0.012 (3)	0.011 (3)	0.022 (3)
S1	0.0789 (12)	0.0677 (11)	0.0693 (11)	0.0304 (9)	0.0312 (9)	0.0198 (8)
S2	0.0724 (11)	0.0620 (10)	0.0691 (10)	0.0270 (9)	0.0271 (9)	0.0255 (8)
S3	0.0786 (11)	0.0489 (10)	0.0704 (10)	0.0211 (8)	0.0216 (9)	0.0143 (8)
S4	0.0877 (13)	0.0815 (13)	0.0977 (13)	0.0462 (11)	0.0460 (11)	0.0414 (10)
Geometric pa	vrameters (Å, °)					
Ni1—S3		2.1571 (19)	C19–	-H19	0.9	300
Ni1—S2		2.1657 (17)	C20–	C21	1.3	73 (10)
Ni1—S4		2.1691 (18)	C20–	-H20	0.9	300
Ni1—S1		2.186 (2)	C21–	C22	1.3	46 (9)
Br1—C9		1.895 (8)	C21-	-H21	0.9	300
Br2—C25		1.884 (7)	C22-	-C23	1.3	67 (9)
C1—C2		1.338 (7)	C22-	-H22	0.9	300
C1—C4		1.430 (9)	C23-	C24	1.4	50 (9)
C1—S1		1.729 (6)	C24–	-N5	1.2	96 (8)
C2—C3		1.411 (8)	C24–	-H24	0.9	300
C2—S2		1.737 (6)	C25-	-C30	1.3	55 (9)
C3—N2		1.149 (7)	C25-	-C26	1.3	63 (10)
C4—N1		1.127 (7)	C26–	C27	1.3	54 (8)
C5—C6		1.325 (8)	C26–	-H26	0.9	300
C5—C8		1.453 (9)	C27–	-C28	1.3	77 (8)
C5—S4		1.737 (7)	C27-	-H27	0.9	300
C6—C7		1.440 (9)	C28–	C29	1.3	68 (7)
C6—S3		1.726 (6)	C28–	-C31	1.5	00 (7)
C7—N3		1.142 (7)	C29–	-C30	1.3	85 (8)
C8—N4		1.140 (7)	C29–	-H29	0.9	300
C9—C14		1.302 (10)	C30–	-H30	0.9	300
C9—C10		1.366 (11)	C31–	-N6	1.4	65 (7)
C10-C11		1.393 (9)	C31–	-H31A	0.9	700
С10—Н10		0.9300	C31-	-H31B	0.9	700
C11—C12		1.365 (9)	C32–	-C33	1.3	32 (8)
C11—H11		0.9300	C32–	-N6	1.3	80 (6)
C12—C13		1.354 (9)	C32–	-H32	0.9	300
C12—C15		1.506 (9)	C33–	C34	1.3	93 (8)
C13—C14		1.379 (9)	C33–	-H33	0.9	300
С13—Н13		0.9300	C34–	C35	1.3	82 (8)
C14—H14		0.9300	C34–	C39	1.4	22 (7)
C15—N5		1.500 (8)	C35–	C36	1.3	80 (8)
C15—H15A		0.9700	C35–	–H35	0.9	300
C15—H15B		0.9700	C36–	C37	1.4	04 (8)
C16—C17		1.343 (11)	C36–	–H36	0.9	300
C16—N5		1.357 (9)	C37–	C38	1.3	40 (8)
C16—H16		0.9300	C37–	–H37	0.9	300

C17—C18	1.362 (10)	C38—C39	1.401 (8)
С17—Н17	0.9300	C38—H38	0.9300
C18—C23	1.369 (9)	C39—C40	1.368 (7)
C18—C19	1.474 (10)	C40—N6	1.315 (6)
C19—C20	1.377 (10)	C40—H40	0.9300
S3—Ni1—S2	86.47 (7)	C22—C23—C18	123.5 (8)
S3—Ni1—S4	91.51 (7)	C22—C23—C24	118.3 (8)
S2—Ni1—S4	177.56 (8)	C18—C23—C24	118.2 (8)
S3—Ni1—S1	178.51 (7)	N5-C24-C23	118.3 (7)
S2—Ni1—S1	92.37 (7)	N5-C24-H24	120.8
S4—Ni1—S1	89.67 (7)	C23—C24—H24	120.8
C2—C1—C4	119.3 (6)	C30—C25—C26	120.9 (7)
C2-C1-S1	121.3 (5)	C30—C25—Br2	119.1 (6)
C4—C1—S1	119.4 (5)	C26—C25—Br2	119.9 (6)
C1—C2—C3	121.7 (5)	C27—C26—C25	120.6 (7)
C1—C2—S2	121.4 (5)	С27—С26—Н26	119.7
C3—C2—S2	116.9 (4)	С25—С26—Н26	119.7
N2—C3—C2	178.9 (7)	C26—C27—C28	120.4 (6)
N1—C4—C1	177.4 (8)	С26—С27—Н27	119.8
C6—C5—C8	121.7 (6)	С28—С27—Н27	119.8
C6—C5—S4	121.8 (5)	C29—C28—C27	118.1 (6)
C8—C5—S4	116.5 (5)	C29—C28—C31	120.7 (6)
C5—C6—C7	124.4 (6)	C27—C28—C31	121.2 (6)
C5—C6—S3	119.8 (5)	C28—C29—C30	121.9 (6)
C7—C6—S3	115.7 (5)	С28—С29—Н29	119.0
N3—C7—C6	174.8 (8)	С30—С29—Н29	119.0
N4—C8—C5	177.9 (8)	C25—C30—C29	117.9 (6)
C14—C9—C10	122.2 (7)	С25—С30—Н30	121.0
C14—C9—Br1	121.9 (8)	С29—С30—Н30	121.0
C10—C9—Br1	115.9 (8)	N6-C31-C28	112.1 (5)
C9—C10—C11	116.9 (7)	N6—C31—H31A	109.2
C9—C10—H10	121.6	C28—C31—H31A	109.2
C11—C10—H10	121.6	N6—C31—H31B	109.2
C12—C11—C10	121.7 (7)	C28—C31—H31B	109.2
C12—C11—H11	119.1	H31A—C31—H31B	107.9
C10-C11-H11	119.1	C33—C32—N6	119.3 (6)
C13—C12—C11	118.0 (7)	С33—С32—Н32	120.4
C13—C12—C15	120.9 (7)	N6—C32—H32	120.4
C11—C12—C15	121.1 (8)	C32—C33—C34	123.2 (6)
C12—C13—C14	120.4 (7)	С32—С33—Н33	118.4
C12—C13—H13	119.8	С34—С33—Н33	118.4
C14—C13—H13	119.8	C35—C34—C33	124.9 (6)
C9—C14—C13	120.7 (8)	C35—C34—C39	119.2 (6)
С9—С14—Н14	119.7	C33—C34—C39	116.0 (6)
C13—C14—H14	119.7	C36—C35—C34	120.1 (6)
N5-C15-C12	111.7 (5)	С36—С35—Н35	119.9
N5-C15-H15A	109.3	С34—С35—Н35	119.9
C12—C15—H15A	109.3	C35—C36—C37	120.2 (6)
N5-C15-H15B	109.3	С35—С36—Н36	119.9

C12—C15—H15B	109.3	С37—С36—Н36	119.9
H15A—C15—H15B	107.9	C38—C37—C36	120.5 (6)
C17—C16—N5	122.9 (9)	С38—С37—Н37	119.8
С17—С16—Н16	118.5	С36—С37—Н37	119.8
N5-C16-H16	118.5	C37—C38—C39	120.8 (6)
C16—C17—C18	117.6 (8)	С37—С38—Н38	119.6
С16—С17—Н17	121.2	С39—С38—Н38	119.6
С18—С17—Н17	121.2	C40—C39—C38	122.2 (6)
C17—C18—C23	121.3 (8)	C40—C39—C34	118.6 (5)
C17—C18—C19	120.4 (9)	C38—C39—C34	119.2 (6)
C23—C18—C19	118.3 (8)	N6-C40-C39	123.0 (6)
C20—C19—C18	116.0 (8)	N6—C40—H40	118.5
С20—С19—Н19	122.0	С39—С40—Н40	118.5
С18—С19—Н19	122.0	C24—N5—C16	121.5 (7)
C21—C20—C19	121.5 (9)	C24—N5—C15	122.3 (7)
C21—C20—H20	119.2	C16—N5—C15	116.2 (8)
С19—С20—Н20	119.2	C40—N6—C32	119.9 (5)
C22—C21—C20	123.1 (8)	C40—N6—C31	121.7 (5)
C22—C21—H21	118.5	C32—N6—C31	118.4 (5)
C20-C21-H21	118.5	C1—S1—Ni1	102.3 (2)
C21—C22—C23	117.5 (7)	C2—S2—Ni1	102.5 (2)
C21—C22—H22	121.2	C6—S3—Ni1	104.1 (2)
С23—С22—Н22	121.2	C5—S4—Ni1	102.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C17—H17…N1 ⁱ	0.93	2.40	3.226 (10)	148
C31—H31A···N2 ⁱⁱ	0.97	2.48	3.359 (10)	151
C36—H36…N2 ⁱⁱⁱ	0.93	2.59	3.288 (9)	132
Summatry and (i) $w \mid 1$ $w \mid 1$ $z \mid 1$ (ii)	-n+1 -1 -1 (iii) $-n$	1		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*+1.

Fig. 1

Fig. 2

